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Abstract 
 

In 2002 Defence R&D Canada changed research direction from pure tele-operated land 
vehicles to general autonomy for land, air, and sea craft. The unique constraints of the military 
environment coupled with the complexity of autonomous systems drove DRDC to carefully 
plan a research and development infrastructure. This infrastructure, using a Component Based 
Software Engineering approach, would provide state of the art tools that didn’t restrict the 
research scope; thus allowing DRDC to pursue its long-term research goals. 

DRDC’s long term objectives for its autonomy program address disparate unmanned ground 
vehicle (UGV), unattended ground sensor (UGS), air (UAV), and subsea and surface (UUV 
and USV) vehicles operating together with minimal human oversight (Collectively known as 
UxVs). The individual systems may range in complexity from simple reconnaissance mini-
UAVs to sophisticated autonomous combat UGVs. These systems, when integrated into a 
common command and control structure that included manned elements, can provide long 
endurance, low risk battlefield services. 

A key enabling technology for DRDC’s autonomy research is a software architecture that 
meets both current and future requirements. DRDC adopted the Component Based Software 
Engineering philosophy to develop its software architecture known as the “Architecture for 
Autonomy”. Although a well established practice in computing science, CBSE using 
frameworks has only recently entered common use in the field of UxV development. For 
industry and government, the complexity, cost, and time to re-implement stable systems often 
exceeds the perceived benefits of adopting a modern software infrastructure. Thus, most 
persevere with legacy software, adapting and modifying software when and wherever possible 
or necessary – adopting strategic software frameworks only when no justifiable legacy exists. 
Conversely, academic programs with short one or two year projects frequently exploit 
strategic software frameworks but with little enduring impact. Following the 2002 focus shift 
DRDC found itself in a unique position where researchers could freely review past 
experiences and latest advances in software technology, before selecting the best path 
forward. The open-source movement has a significant impact on DRDC’s views with respect 
to software development. Academic frameworks, open to public scrutiny and modification, 
are now available for a variety of niche specific research areas and researchers leveraged this 
research to maximize the benefits to its autonomy research program. 

This document describes the “Architecture for Autonomy”, how it meets the program’s 
current needs and details its usage on the Raptor UGV. It also presents an argument for why 
this architecture should also satisfy future requirements as well. 

DRDC Suffield TM 2006-188 i 
 
 
 



Résumé 
 

R & D pour la défense Canada a changé la direction de sa recherche sur les véhicules 
terrestres purement télé-opérés pour s’orienter vers celui de l’autonomie générale 
d’embarcations terrestres, aériennes et maritimes. Les contraintes spécifiques à 
l’environnement militaire, combinées  à celles de la complexité des systèmes autonomes, ont 
amené RDDC à planifier prudemment son infrastructure de recherche et développement. 
L’infrastructure, utilisant une méthode d’ingénierie logicielle à base de composants, a produit 
des outils d’avant garde qui ne restreignent pas la portée de la recherche et permet ainsi de 
poursuivre des objectifs de recherche à long terme. 

Les objectifs à long terme des programmes d’autonomie de RDDC concernent des véhicules 
disparates terrestres sans pilote (UGV), des capteurs au sol non surveillés (UGS), des 
véhicules aériens sans pilote (UAV), des véhicules sous-marins (UUV) et de surface (USV) 
sans équipage, opérant ensemble avec un minimum de surveillance humaine (connus 
collectivement sous le nom de véhicules sans pilote (UxVs). Les systèmes individuels peuvent 
varier en complexité allant d’un mini UAV de simple reconnaissance aux UGV de combats 
autonomes sophistiqués. Ces systèmes, une fois intégrés sur les champs de bataille, dans une 
structure de commande et de contrôle commune qui inclut les éléments avec équipage, 
peuvent fournir des services de longue endurance à faible risque. 

Une technologie clé de mise en service pour la recherche en autonomie de RDDC est une 
architecture de logiciels qui répond aux besoins à la fois actuels et futurs. RDDC a adopté une 
philosophie d’ingénierie logicielle à base de composants pour développer son architecture de 
logiciels connue sous le nom « Architecture d’autonomie ». Bien qu’elle soit une pratique 
bien établie en informatique, l’ingénierie logicielle, qui utilise des cadres conceptuels vient 
récemment d’être adoptée dans le domaine de mise au point des UxV. Pour l’industrie et le 
gouvernement, la complexité, le coût et le temps nécessaires à implémenter des systèmes 
stables excèdent souvent les avantages perçus à adopter une infrastructure moderne de 
logiciels. C’est pourquoi la plupart persévère avec le legs des logiciels, adaptant et modifiant 
les logiciels quand et où cela est possible ou nécessaire, adoptant des cadres conceptuels de 
logiciels stratégiques seulement quand il n’existe pas de legs justifiable. À l’opposé, les 
programmes de formation générale, ayant des projets courts de une à deux années, exploitent 
fréquemment les cadres conceptuels stratégiques de logiciels mais avec peu d’impact. Après 
le changement de direction en 2002, RDDC s’est trouvé être dans la position particulière où 
les chercheurs ont pu librement étudier les expériences passées et les progrès les plus récents 
de la technologie logicielle, avant de sélectionner la meilleure voie à suivre. Le mouvement de 
source ouverte a un impact important sur les idées de RDDC concernant le développement de 
logiciels. Les cadres conceptuels de formation générale, ouvert à l’examen et à la 
modification par le public, sont maintenant disponibles pour une variété de niches spécifiques 
à des domaines de recherche et des chercheurs ont optimisé cette recherche pour en maximiser 
les avantages, au profit du programme d’autonomie. 

Ce document décrit « l’Architecture d’autonomie », comment cette dernière répond aux 
besoins actuels du programme et détaille la manière dont elle est utilisée sur le Raptor. Ce 
document soumet l’argument que cette architecture devrait également répondre aux besoins 
futurs. 

ii DRDC Suffield TM 2006-188 
 
 
 



  

Executive summary 
 

Architecture for Autonomy 
G.S. Broten, J.A. Collier, J.L. Giesbrecht, S.P. Monckton, D.J. Mackay; 
DRDC Suffield TM 2006-188; Defence R&D Canada – Suffield; December 2006. 

Background: Defence R&D Canada researches Autonomous Intelligent Systems as defined 
by the DRDC Technology Investment Strategy (TIS) where the TIS defines autonomy as 
”...automated or robotic systems that operate and interact in the complex and unstructured 
environments of the future battlespace”. To achieve these goals, DRDC switched focus from 
tele-operated land vehicles to general autonomy for land, air, and sea unmanned vehicles 
(UxV). Although these UxV platforms range in complexity from the small and simple with 
only the most basic sensing capabilities to large, sophisticated, fully augmented platforms, all 
UxV platforms have similar autonomy requirements; namely, the ability to operate with 
minimal human supervision. This minimal human intervention requirement demands that 
autonomous UxVs have innate decision making capabilities, which in turn implies autonomy 
is implemented in symbolic, algorithmic entities using software. Autonomy, with its pervasive 
software foundations, requires an environment that allows researchers to pool their resources 
by sharing algorithms; thus allowing UxVs to be implemented in a plug-and-play manner. 
This document presents DRDC’s software architecture know as the “Architecture for 
Autonomy” (AFA). This architecture follows the Component Based Software Engineering 
philosophy (CBSE), which promotes the development of portable, modular and extensible 
”software” that can easily and seamlessly be transported to, and integrated into, new 
applications. 

Results: The success of UxVs hinges upon the development of autonomous capabilities. 
Given the complexity of the autonomy problem, multiple researchers or research groups must 
pool their resources and this in turn demands a portable, modular and extensible software 
development approach. The “Architecture for Autonomy”, based upon the CBSE philosophy, 
provides the software development environment required by DRDC’s autonomy researchers. 
The Raptor unmanned ground vehicle (UGV), with its software developed under the AFA, 
required multiple researchers to concurrently and independently develop and implement 
autonomous capabilities. The AFA framework simplified the component development process 
and the component-based approach was instrumental in the successful integration of each 
researcher’s contribution into the overall Raptor UGV. 

Significance of Results: Developed under the AFA, the Raptor UGV successfully 
demonstrated autonomous capabilities during a trials and highlighted the achievements of the 
Autonomous Lands Systems project. Subsequent research, under the Cohort ARP, has built 
upon the ALS foundations to give the Raptor UGV more robust and sophisticated autonomous 
capabilities. 

Future Plans: Although only DRDC Suffield currently uses the AFA, researchers at Suffield 
have provided this architecture to their colleagues at Valcartier for use within their unmanned 
aerial vehicle program. 
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Sommaire 
 

Architecture for Autonomy 
G.S. Broten, J.A. Collier, J.L. Giesbrecht, S.P. Monckton, D.J. Mackay; 
DRDC Suffield TM 2006-188; R & D pour la défense Canada – Suffield; décembre 2006. 

Contexte : R & D pour la défense Canada effectue des recherches sur les Systèmes 
intelligents autonomes (SIA) où autonomie est définie par la Stratégie d’investissement en 
technologie de RDDC comme « systèmes automatisés ou robotiques qui opèrent et 
interagissent dans les environnements complexes et non structurés des espaces de combat. » 
Pour accomplir ces objectifs, RDDC a détourné son attention des véhicules terrestres télé-
opérés pour focaliser sur les véhicules terrestres, aériens et maritimes sans équipage (UxV). 
Bien que ces plates-formes UxV varient en complexité, allant du petit et simple ayant une 
capacité de détection des plus basiques jusqu’aux grandes plateformes sophistiquées et de 
capacité intensifiée au maximum, toutes les plates-formes UxV ont des besoins similaires en 
autonomie dont celui d’opérer avec un minimum de surveillance humaine. Ce besoin 
d’intervention humaine minimale exige que les UxV autonomes aient une capacité innée de 
prise de décisions, impliquant ainsi que l’autonomie soit implémentée en entités symboliques 
et algorithmiques, au moyen de logiciels. L’autonomie ayant de puissantes fondations 
logicielles, exige un milieu qui permet aux chercheurs de mettre leurs ressources en commun 
en partageant les algorithmes, ce qui permet aux UxV d’être implémentés d’une manière auto-
configurable. Ce document présente l’architecture logicielle de RDDC, connue comme 
« architecture d’autonomie ». Cette architecture respecte la philosophie d’ingénierie logicielle 
à base de composants (CBSE) qui promeut la mise au point de « logiciels » portables, 
modulaires et extensibles pouvant être transportés  facilement et sans coutures dans des 
applications intégrées et nouvelles. 

Résultats : Le succès des UxVs dépend du développement des capacités autonomes. Étant 
donné la complexité du problème d’autonomie, une multiplicité de chercheurs et de groupes 
de recherche doivent mettre leurs ressources en commun ce qui exige une méthode de 
développement de logiciels portables, modulaires et extensible. L’« architecture d’autonomie 
» basée sur la philosophie d’ingénierie logicielle à base de composants, permet le 
développement d’un environnement de logiciels requis par les chercheurs en autonomie de 
RDDC. Le véhicule terrestre sans pilote, Raptor, dont le logiciel est développé avec 
Architecture d’autonomie, exige qu’une multiplicité de chercheurs développe 
indépendamment et simultanément des capacités autonomes. Le cadre conceptuel 
d’Architecture d’autonomie a simplifié le processus du développement des composants et la 
méthode à base de composants a été instrumentale pour réussir à intégrer la contribution de 
chaque chercheur à l’ensemble du véhicule Raptor. 

La portée des résultats : Mis au point avec l’Architecture d’autonomie, le Raptor a réussi à 
démontrer ses capacités autonomes durant les essais et a mis en évidence les 
accomplissements du projet des Systèmes terrestres autonomes. La recherche ultérieure, 
Cohort ARP, a bâti sur les fondations STA pour donner au Raptor des capacités autonomes 
plus robustes et plus sophistiquées. 

Plans futurs : Bien que RDDC Suffield soit le seul à utiliser l’Architecture d’autonomie, les 
chercheurs de Suffield ont fourni cette architecture à leurs collègues de Valcartier pour que 
ces derniers l’utilisent avec le programme de véhicules aériens sans pilote. 
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1 Introduction

DRDC, a defence research organization with a 20 year history of application development
in tele-operated air and land vehicles, has developed numerous tele-operated unmanned
ground vehicles (UGV), many founded on the ANCÆUS command and control system. The
ANCÆUS control network used Motorola 68HC16 microcontrollers and an IBM compatible
computer, running OS/2, implemented the control station. A selection of ANCÆUS based
vehicles are shown in Figure 1.

Figure 1: Legacy ANCÆUS based Vehicles

With DRDC’s 2002 switch in focus to autonomy a review of ANCÆUS ’s status was re-
quired [1]. This review concluded that ANCÆUS is fundamentally a command interface
and was inadequate for autonomous applications. Thus DRDC researchers, using previous
experiences with tele-operated vehicles and software, thoroughly reviewed the current state-
of-the-art in autonomy. This review concluded that future autonomous systems require a
portable, modular and extensible architecture “... that, at once, supports and encourages
distributed computing, and frees investigators to focus on the development of intelligent
single and multi-vehicle control systems.” [2] It also foresaw an architecture that, ideally ”
... should seamlessly transition between real vehicle control, system diagnosis through the
replay of gathered data and the control of a vehicle in a simulated world.” This approach
would free the investigator to develop intelligence algorithms without the distractions caused
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by real vehicle implementations.

To facilitate the dissemination of research this architecture would follow an open source
philosophy and use open tools, applications and operating systems [3]. These open source
tools and applications include

• the Linux operating system,

• the GNU toolchain including make, autoconf and the gcc compiler and

• open source libraries: GSL, ATLAS, Lapack, Boost and others.

Combatting a “must be invented here” tradition, DRDC readily examined the current
trends in robotics and quickly realized a framework approach could mitigate many risks
and relieve many constraints incurred by pure in-house software development. This re-
view of architectures and frameworks quickly produced as short list of architectures that
were capable of meeting DRDC’s autonomy requirements. Of the five candidate architec-
tures, Player/Stage [4], Carmen [5], Marie [6], Miro [7, 8] and Orca [9], Miro contained
the feature set that best matched DRDC needs [10, 11]. Thus, it was concluded that the
ACE/TAO/MIRO toolchain [12, 13], with powerful CORBA [14, 15] interprocess commu-
nication, provided the most open, proven, real-time, and portable code base for a military
research program.

This report is organized into 6 sections. Section 2 gives an overview of the “Architecture for
Autonomy” and its implementation. In Section 3 the components developed under the AFA
are detailed. Utilities that assist in the visualization and monitoring of system/component
status are described in Section 4. The effort required to develop autonomous capabilities is
summarized in Section 5. Finally, Section 6 provides conclusions.
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2 DRDC’s Architecture for Autonomy

Scale, modularity, distribution, platform independence, and flexibility govern military ap-
plications of autonomous unmanned vehicle control. The software environment must scale
to tolerate different team sizes and must be modular to support variation in payloads. It
must accommodate distributed computing capabilities through networking and must sepa-
rate hardware from software to achieve platform independence. Finally, the software must
not limit engineers to any single method of vehicle control. To meet the above requirements
DRDC adapted the open source Miro [16] framework.

2.1 Raptor UGV

DRDC adapted and extended Miro to support the Koyker Industries Raptor, an Ackerman
steered, hydrostatic, all wheel drive utility vehicle. Shown in Figure 2 is the Raptor vehicle
XJ Designs modified such that throttle, brakes, steering, and other parameters could be
monitored and controlled through a single software interface. Also mounted on this vehicle
are sensors for outdoor, autonomous operations.

Figure 2: The Raptor UGV

The sensing systems include:

• Proprioceptive sensing collecting raw position and orientation data via a Gps, Imu
and odometry.

• Exteroceptive sensing including laser rangefinders [17, 18] and stereo vision.

2.2 Adaptation of Miro

Although the Miro framework was originally developed for a robosoccer application, it was
easily adapted to unmanned ground vehicle applications. Miro’s customized system infras-
tructure layer, based upon the TAO [19] real-time CORBA [14] implementation using the
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Figure 3: Subscribe-Publish Server Design Pattern

ACE toolkit [20], provides blackbox services such as mechanisms for logical communica-
tions, concurrency and device abstraction. These Miro services facilitate the application
development by following standard design patterns.

2.2.1 Design Patterns

Miro uses three basic design patterns [21] to implement services, as shown in Figures 3
through 5. These design patterns include:

Subscribe-Publish Server (SPS), shown in Figure 3, receives events, processes the data
and publishes events. Using this design pattern a Miro server becomes an independent
component with its interfaces defined by the CORBA objects that facilitate event
subscription and publication, as well as the CORBA interfaces that enable polling.

Publish Server and Reactor (PSR), shown in Figure 4, serves as the basis for handling
external hardware/software entities. Its fundamental objective is to separate the
physical device driver from the software that publishes events and the interfaces that
enable polling.

Client , shown in Figure 5, is the design pattern that allows a client process to poll data
from a Miro server.

2.2.2 Miro Services

Implementing an application, using the Miro design patterns described in Section 2.2.1,
requires the understanding of several key CORBA concepts and Miro services. Figure 6
shows the relationships between the CORBA concepts, the Miro Server and Client services.

The three CORBA concepts and two Miro services are:
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Figure 4: Publish Server and Reactor Design Pattern

CORBA Naming Service: Much like a phone book’s white pages that maps names to
phone numbers, the CORBA Naming Service facilitates data exchange between pro-
cesses by mapping object names and event channel names.

CORBA Event Channels and Polling: Using CORBA capabilities Miro implements
both the message and information paradigms, as polling and event channels respec-
tively. Under the polling paradigm a Miro client, using CORBA interfaces, directly
requests and receives data from a Miro server. Event channels, implemented using
the CORBA Notification Service, allow a Miro server to anonymously subscribe to
events published by another Miro server.

Interface Description Language: The Interface Description Language (IDL) describes
the properties of a CORBA object in terms of data types and access methods known
as interfaces. Thus, via the IDL language, a CORBA object represents a component
with an interface that allows independent processes to exchange information in a
network transparent manner.

Miro Server: Using the Miro server framework, both traditional client-server transactions
and event driven processing can occur simultaneously. The Miro server is implemented
under the Subscribe-Publish Server design pattern or the Publish Server and Reactor
design pattern.

Miro Client: The Miro client defines a framework, using the client side IDL object binding
implemented under the Client design pattern, that allows a client process to poll a
Miro server following the familiar CORBA client-server transaction model.
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3 DRDC Components

Using a white-box approach researchers created UGV specific components using the Miro
framework. These components were implemented under on of the following Miro design
patterns: Subscribe-Publish Server, Publish Server and Reactor and Client. The modular
vehicle controller exploits ACE/TAO/CORBA capabilities to run several behaviour com-
ponents such as Goal Seeking, Obstacle Detection, Obstacle Avoidance, and Path Planning,
independently, on one or more CPUs, distributed across a TCP/IP network to achieve vary-
ing levels of autonomy. Figure 7 shows a flow diagram of the architecture implemented on
the Raptor UGV. Each solid box represents a Miro based component that can reside any-
where on a network and each connector represents data flows accessible to any subscriber
service.

PURSUIT
PURED*LiteAVOID.

OBSTACLE
DETECT.

OBSTACLE

MAP
TRAVERSE.

MAP
TERRAIN

LASER STEREO IMU GPS

ARBITER
ARC

VEHICLE

SERVER
MODEL

MAP
GLOBAL

Sensing

Information
Processing and
Representation

Planning and
Goal Seeking

Decision Making

Vehicle Control

ODOMETRY

Figure 7: Raptor UGV Flow Diagram

The Raptor UGV components are divided into logical domains:

• Sensing

• Information Processing and Representation

• Planning and Goal Seeking

• Decision Making

• Vehicle Control

• Utilities
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The following sections, covering each logical domain, provide details on each component’s
implementation.

3.1 Sensing

Under the ALS demonstration configuration the Raptor UGV received data from five unique
sensing devices. Four of these devices, laser ranging, stereo vision ranging, IMU, and GPS,
are dedicated sensors; wheel odometry is provided by the Raptor vehicle.

The AFA philosophy requires that each sensor interface use a component based approach,
where raw data is acquired, converted to a generic data representation, packaged into an
IDL defined structure, and published anonymously as events to be consumed by interested
parties. Additionally, all sensing components respond to asynchronous poll requests for
data. The following sections detail each sensing component’s implementation, with specific
references to their underlying design pattern and to their interfaces.

3.1.1 Laser Rangefinder

DRDC, in conjunction with Scientific Instrumentation Ltd., developed a nodding device
for the SICK LMS 211 laser. The SICK laser measures the time of flight for a laser light
pulse and internally converts the time value into the corresponding distance. To ensure
timeliness, RTEMS, a real-time operating system is used as the operating system for the
on-board controller. Figure 8 shows the custom nodding mechanism with a SICK laser
rangefinder.

Figure 8: Nodding Laser

The Nodding Laser component, based upon the PSR design pattern, uses an ethernet con-
nection to retrieve raw range data from the SICK laser, processes the data into a 3-D
format and publishes this data using the Range3dLaserIDL/Range3dSeqEventIDL struc-
tures. The interface with the physical world builds upon the ACE reactor, as it simplifies
TCP/IP based interprocess communications. The Miro server aspect of this component
allow it to concurrently publish events while responding to poll requests.
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Table 1 lists the events that could be published by the Nodding Laser component and their
respective update rates. As can be seen in this table range events may be, either fixed size,
static arrays or variable length CORBA sequences.

Published Events Implementation Update Rate

Range3dLaserIDL Static Array 26.6 ms

Range3dSeqEventIDL CORBA Sequence 26.6 ms

Table 1: Nodding Laser Component’s Published Events

The Nodding Laser component also presents CORBA compliant interfaces that support
network transparent polling. A list of these polling interfaces is given in Table 2. As with
the publication of events, the polling interfaces supports both fixed size arrays and dynamic
sequences.

Poll Interface Polled Event Implementation

get3dLaserFullScan() Range3dLaserIDL Static Array

get3dLaserWaitFullScan() Range3dLaserIDL Static Array

get3dSeqFullScan() Range3dSeqEventIDL CORBA Sequence

get3dSeqWaitFullScan() Range3dSeqEventIDL CORBA Sequence

Table 2: Nodding Laser Component’s Published Interfaces

This component registers event and interface names with the CORBA Naming Service (see
Section 2.2.2) using the defaults provided by the module’s configuration file. Given the
Raptor vehicle supports multiple forward looking nodding lasers, and backwards directed
nodding lasers, the root event/interface name commonly starts with Laser and is concate-
nated with a unique I.D. number1. This parameter, along with others, are read at run-time
and defined by the NodLaserConfig section in the Raptor’s XML configuration file. Each
parameter, along with its significance, is listed in Table A.1 of the appendix.

3.1.2 Stereo Vision

The Raptor UGV uses the commercial Digiclops camera, produced by Point Grey Systems,
as a stereo vision device. The Digiclops features a trinocular camera arrangement and is
capable of producing disparity maps with a resolution of 640×480, but on the Raptor UGV
the Digiclops’ performance is downgraded to a resolution of 320 × 240. Figure 9 shows the
Digiclops stereo system. The Stereo Vision component is derived from the PSR design
pattern; thus, it features both an ACE reactor and a Miro server. The ACE reactor imple-
ments schedule timer() and handle timeout() functions that allow images to be acquired,
the disparity processed and the event publication process to occur at a user defined rate.
The component’s Miro server allows the event publication process to running concurrently
with poll requests.

1Such as Laser 11 or Laser 12
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Figure 9: Digital Stereo Camera

Table 3 lists the events that could be published by the Stereo Vision component and their
respective update rates. As can be seen in this table range events may be, either fixed size,
static arrays or variable length CORBA sequences. The fixed size arrays must be specified
at compile time, whereas CORBA sequences are flexible and can be specified at run-time.

Published Events Implementation Update Rate

Range3dStereoEventIDL Static Array Variable, default 2 sec.

Range3dArrayEventIDL CORBA Sequence Variable, default 2 sec.

Table 3: Stereo Vision Component’s Published Events

The Stereo Vision component also presents CORBA compliant interfaces that support
network transparent polling. A list of these polling interfaces is given in Table 4. As with
the publication of events, the polling interfaces for this component supports both fixed size
arrays and dynamic sequences.

Poll Interface Polled Event Implementation

get3dStereoFullScan() Range3dStereoEventIDL Static Array

get3dStereoWaitFullScan() Range3dStereoEventIDL Static Array

Range3dArrayEventIDL() Range3dArrayEventIDL CORBA Sequence

get3dArrayWaitFullScan() Range3dArrayEventIDL CORBA Sequence

Table 4: Stereo Vision Component’s Interfaces

Commonly, the Stereo Vision component publishes data under the Stereo event name. The
Stereo name is also used to register its interfaces with the CORBA Naming Service. This
name, along with other configuration values, is defined in the Raptor’s XML configuration
file, under the StereoConfig section. A complete list of configuration parameters is given in
Table A.2, which is located in the appendix.

3.1.3 IMU

The Raptor UGV uses the Microstrain, 3DM-GX1 IMU, gyro enhanced orientation sensor
to provide orientation data. The IMU component, derived from the Publish Server and
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Reactor design pattern, acquires orientation data from the device using serial communica-
tions and publishes it as a ImuIDL event, as shown in Table 5. Encoded within this event
is the vehicle’s orientation and the accelerations experienced.

Published Events Implementation Update Rate

ImuIDL Structure of Doubles 100msec

Table 5: Imu Component’s Published Events

Upon startup the component’s event and interface names are registered with the CORBA
Naming Service. The event and interface names default to Imu, though this name can be
changed via the configuration file. The interface registration enables polling requests, thus
allowing external components to access he most recent orientation via the callback function
shown in Table 6.

Poll Interface Polled Event Implementation

getImuData() ImuIDL Strucuture of Doubles

Table 6: Imu Component’s Interfaces

The Imu’s run-time operation is controlled by the parameters defined in the Raptor’s XML
configuration file. Each parameter, along with its significance is listed in Table A.3, located
in the appendix.

3.1.4 GPS

A Sokkia GSR2600 receiver and a Pacific Crest PDL radio provide differentially corrected
GPS localization for the Raptor vehicle at an update rate of 4 Hz, via a serial port interface.
The GPS Sokkia component provides communications with the GPS hardware, and pub-
lishes GpsIDL events; making this information available to other software components. The
GPS Sokkia component is derived from the PSR design pattern, using the ACE Reactor for
serial port control, while the Miro Server publishes events and responds to poll requests.
The GpsIDL event, shown in Table 7, contains a variety of data items, such as latitude,
longitude, elevation, eastings, northings, satellite count, horizontal speed, etc.

Published Events Implementation Update Rate

GpsIDL Structure of Doubles,Integers 250msec

Table 7: GPS Sokkia Component’s Published Events

On startup the GPS Sokkia component will register a Gps interface with the CORBA
Naming Service, but, if necessary this name can be changed via the configuration file. This
registration process allows external components to resolve the component’s interfaces, as
listed in Table 8, and poll for position data.
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Poll Interface Polled Event Implementation

getPosition() GpsIDL Structure of Doubles,Integers

Table 8: GPS Sokkia Component’s Interfaces

Finally, GPS Sokkia component’s run-time operation can be configured by the parame-
ters defined in the Raptor’s XML configuration file. The paramaters, located under the
GpsSokkiaConfig section, are given in Table A.4 of the appendix. This table lists each
parameter and provides a description of its significance and usage.

3.1.5 Wheel Odometry

The Raptor UGV obtains odometry information from its on-board MPC555 controller,
which measures and accumulates data from the two front wheel encoders. This odometry
data is transmitted via a serial interface for consumption by the Wheel Odometry compo-
nent. This component is derived from the PSR design pattern, and thus, it incorporates
both an ACE reactor and a Miro server. The component processes serial data using the
ACE reactor callback function, concurrently publish WheelDataIDL events and respond to
poll requests. Table 9 specifies the event published by the Wheel Odometry component.
The component’s polling interface is detailed in Table 10.

Published Events Update Rate

WheelDataIDL 250 ms (configurable)

Table 9: Wheel Odometry Component’s Published Events

Poll Interface Polled Event Implementation

getWheelData() WheelDataIDL Static Array

Table 10: Wheel Odometry Component’s Published Interfaces

The event and interface names registered with the CORBA Naming Service are defined
in the module’s configuration file. Commonly, the Wheel Odometry component publishes
WheelDataIDL data under the RaptorOdometry event name and uses the same name for
resolving interfaces.

The runtime parameters, which affect the wheel odometry, are defined in the Raptor XML
file, and are listed in Table A.5 of the appendix.

3.2 Information Processing and Representation

Before the Raptor UGV can make decisions it must sense the environment and use this
information to create applicable representations. The Terrain Map, Traversability Map,
and ModelServer components all acquire data, process this information and produce new
representations that are useful for autonomous operations.
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3.2.1 Terrain Map Component

The Terrain Map component receives data from the exteroceptive sensors, such as the
SICK laser and Digiclops stereo camera and fuses it into a grid map. The grid map, formed
by rectangular array of regions, serves as the primary level world representation2. The
Terrain Map component, derived from the Subscribe-Publish Server design pattern, can
concurrently publish events, receive events and respond to poll requests. Table 11 lists the
events that could be published by the Terrain Map component and their respective update
rates. As can be seen in this table, terrain map events may be fixed size, static arrays or
variable length CORBA sequences.

Published Events Implementation Update Rate

MapArrayEventIDL Static Array Variable, default 1 sec.

MapSeqEventIDL CORBA Sequence Variable, default 1 sec.

EgoMapArrayEventIDL Static Array Variable, default 1 sec.

EgoMapSeqEventIDL CORBA Sequence Variable, default 1 sec.

Table 11: Terrain Map Component’s Published Events

The Terrain Map component also presents CORBA compliant interfaces that support net-
work transparent polling. A list of these polling interfaces is given in Table 12. As with
the publication of events, the polling interfaces support both fixed size arrays and dynamic
sequences.

Poll Interface Polled Object Implementation

getMapArray() MapArrayEventIDL Static Array

getWaitMapArray() MapArrayEventIDL Static Array

getMapSeq() MapSeqEventIDL CORBA Sequence

getWaitMapSeq() MapSeqEventIDL CORBA Sequence

getEgoMapArray() MapArrayEventIDL Static Array

getWaitEgoMapArray() MapArrayEventIDL Static Array

getEgoMapSeq() MapSeqEventIDL CORBA Sequence

getWaitEgoMapSeq() MapSeqEventIDL CORBA Sequence

Table 12: Terrain Map Component’s Interfaces

Event and interface names are registered with the CORBA Naming Service using the values
defined in the module’s configuration file. Commonly, the Terrain Map component publishes
MapArrayEventIDL/MapSeqEventIDL events under the Terrain event name. The Terrain
name is also used to resolve the component’s interface callback functions.

Upon start-up the Terrain Map component also polls the ModelServer component for ge-
ometry information regarding the placement of the range devices. Using this geometry

2See Figure 17, in Section 4.4 for a typical terrain map.
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information the map transforms the range data to the map’s frame of reference. Table 13
shows the variables required to poll the ModelServer component and the transformation
object returned. Additionally, the Terrain Map component requires range data and pose
data to create the map; thus it typically subscribes to the events listed in Table 14.

Object Server Resolution Variable Polled Interface Polled Object

ModelServer Platform var getTransformation() PoseTransformIDL var

Table 13: Polling Variables and Objects

Event Channel Event Name Event Object

EventChannel Laser11 Range3dLaserIDL/Range3dSeqEventIDL

EventChannel Laser12 Range3dLaserIDL/Range3dSeqEventIDL

EventChannel Stereo Range3dStereoEventIDL/Range3dArrayEventIDL

Table 14: Subscribed Events

The MapConfig section of the Raptor’s xml configuration file specifies the Terrain Map
component’s run-time operation. These parameters specify numerous options, ranging from
subscribed event names, published event names, map depth and width, to the definitions of
various update periods. Table A.6 provides a complete list of these parameters along with
their significance and default values.

3.2.2 Traversability Map Component

The Traversability Map component subscribes to the events listed in Table 17, which are
published by the Terrain Map component described in Section 3.2.1. This component
converts the fine resolution terrain map to a coarser traversability map. The traversability
map is also grid based where each element contains measures of traversability, the ease with
which a UGV can navigate the given cell, and Goodness, the accuracy of the data used to
produce traversability. The Traversability Map component is derived from the SPS design
pattern and consequently, it can concurrently publish events and respond to poll requests.
Table 15 lists the possible events that could be published by the this component and their
respective update rates.

Published Events Implementation Update Rate

TravMapArrayEventIDL Static Array Variable, default 1 sec.
EgoMapArrayEventIDL Static Array Variable, default 1 sec.

Table 15: Traversability Map Component’s Published Events

The Traversability Map component, derived from the Miro server, also provides the polling
interfaces listed in Table 16. As with the publication of events, the polling interfaces are
implemented using fixed size arrays. Traverse is the default name for registering events and
interfaces with the CORBA Naming Service. These names, along with other parameters,
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are specified under the TraverseMap section of the Raptor’s xml file. Table A.7, located in
the appendix, specifies all configurable run-time parameters and describes each paramater’s
significance.

Poll Interface Polled Object Implementation

getTravMapArray() TravMapArrayEventIDL Static Array

getWaitTravMapArray() TravMapArrayEventIDL Static Array

getEtravMapArray() EtravMapArrayEventIDL Static Array

getWaitEtravMapArray() EtravMapArrayEventIDL Static Array

Table 16: Traversability Map Component’s Interfaces

Event Channel Event Name Event Object

EventChannel Terrain MapArrayEventIDL

EventChannel Terrain EgoMapArrayEventIDL

Table 17: Subscribed Events

3.2.3 Global Map Component

The Global Map component maintains a cumulative view of the traversability information
generated by the Traversability Map component, described in the previous section. The
Global Map component is derived from the Subscribe-Publish Server design pattern. It sub-
scribes to TravMapArrayEventIDL events published by the Traversability Map component
and generates PlanMapEventIDL events. The PlanMapEventIDL events simply encapsu-
late the information contained in the TravMapArrayEventIDL events received by Global
Map component and provide a convenient means to trigger the redisplay of the developing
global map in the qtEventPlanMap viewer.

In addition, the Global Map component employs a polled interface for use by the FindPath
component in planning a path. This interface enables

• waypoints for a path to be set and queried in the same fashion as the PurePursuit
component handles waypoints, described in Section 3.3.3,

• a planning space boundary to be set and queried, and

• the vehicle’s current location and the cost of traversal to adjacent locations in the
planning space to be queried.

Table 18 details the polling interface provided by Global Map component.

3.2.4 ModelServer Component

Large vehicle navigation services rely on widely distributed components, particularly sen-
sors, positioned both in local and global coordinates. To establish these positions, re-
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Poll Interface Description

boolean
valid(in PlanPointIDL p)

Returns true if the planning node addressed
by p is within the planning grid and reachable;
false otherwise.

double
getPlanningMap( in PlanPointIDL p )

double
getSensingMap( in PlanPointIDL p )

Accessors returning the cost, a priori and
sensed, respectively, of moving to p from an
adjacent point in the planning grid.

boolean
setPlanningMap( in PlanPointIDL p )

boolean
setSensingMap( in PlanPointIDL p )

Accessors setting the cost of moving to point p
from an adjacent point in the planning space;
returns true if successful, false otherwise.

PlanPointIDL
getMap( in PlanPointIDL p )

boolean
setMap( in PlanPointIDL p )

Accessors returning/setting the PlanPointIDL
structure associated with the point p in the
planning space; setMap(.) returns true if suc-
cessful, false otherwise.

PoseTransformIDL
getTransformToPlanningFromWorld()

PoseTransformIDL
getTransformToWorldFromPlanning()

Accessors returning the transforms between
the world and planning frames.

boolean
getVehiclePosition( out Position3DIDL p )

Accessor returning the vehicle’s current po-
sition as reported by the latest TravMa-
pArrayEventIDL received by Global Map; re-
turns true if successful, false otherwise.

boolean
getNextWaypoint( out WaypointIDL point,

in WaypointIDL current )

Accessor returning the next waypoint; returns
true if successful, false otherwise.

Table 18: Polled Interface provided by GlobalMap for use by the FindPath component

searchers combined an internal geometry database and vehicle pose estimation into a Mod-
elServer that publishes both fixed local geometric transforms and global vehicle position in
UTM coordinates.

Internal Geometry Database: The internal geometry database follows common dynamic
modeling conventions (e.g. in ODE[22]) by managing three data types: a Body, a BodyFrame,
and a Constraint, accessible through a BodyList, a ConstraintList, and a directed graph
Model. Constraints bind distinct Body-BodyFrame pairs through a time invariant homoge-
neous transform and pointers to From and To bodyframes respectively. The Model then
resembles a cyclic directed graph of Body-BodyFrame vertices with transformation connec-
tors

PlatformIDL methods, summarized in Table 19, provides the primary poll interface to
ModelServer geometry. Through this interface, clients can interrogate the model for:

• all available Bodies returned as a sequence of strings.
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Returned Type Function Call Returns

PoseTransformIDL getTransformation (A,B) transform ATB.

StringSequenceIDL getBodyList() all body names in model.

StringSequenceIDL getBodyFrameList() all frame names in body.

Table 19: PlatformIDL methods.

Event Channel Event Name Event Object

EventChannel Gps GpsIDL

EventChannel Imu ImuIDL

EventChannel Odometry WheelEventIDL

Table 20: ModelServer’s Subscribed Events

• all available Frames for any body returned as a sequence of strings.

• transforms between any two Body/Bodyframe nodes.

To poll ModelServer, a client design pattern follows a structure similar to Figure 5.

Geometry queries from any given process need occur only once since internal vehicle geom-
etry does not change over time.

Pose Estimation: Unlike the simple client server model of the geometry database, the pose
estimation engine of ModelServer exemplifies a Subscribe-Publish server design pattern,
consuming and fusing GPS, IMU and odometry into published pose events sent to numer-
ous subscribers3. In ModelServer, an object derived from Miro’s Structured PushCon-
sumer class responds to every published GPS, IMU, and odometry event (e.g. published by
SokkiaService, the GPS server), described in Table 20, via the push structured event()

method. In turn, this method calls a localization filter, effectively updating the location
estimate with each new sensor event.

ModelServer publishes this new location estimate as a Pose event corresponding to the
PoseTransformIDL data structure. Clients subscribing to ModelServer Pose events use a
similar design pattern to ModelServer itself.

The PoseIDL in Table 21 provides type definitions for the PlatformIDL object in Table
19, the most significant being PoseTransformIDL. This time stamped structure contains
a pose validity flag to warn consumers of unreliable data, an initial UTM coordinate, and
a homogeneous transform. The validity flag provides consumers with an indication of
the event’s reliability. When the vehicle is stationary, GPS heading becomes erratic and
contaminates the filtered solution; thus, this flag warns clients that the pose might be
questionable.

3As shown in Figure 7, the Terrain Map, Global Map and Pure Pursuit components subscribe to pose

events.
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Type Name Description

TimeIDL time Time Stamp

double[4][4] HTransform a 4x4 homogeneous transform.

double[3] initialUTM initial UTM position.

char poseValidFlag the Pose Valid flag.

Table 21: PoseTransformIDL Structure published by ModelServer on ’EventChannel’.

Since world coordinates are in UTM, vehicle position was expressed in very large meter dis-
placements from a UTM zone origin and these large numbers often causing downstream nu-
merical errors in the Terrain Map service. To prevent these errors, yet retain the true world
coordinate, the Pose event stores a startup UTM position in initialUTM. HTransform’s
position vector is measured from this point and updated as the vehicle moves.

Configuration: Modelserver’s behaviour may be modified by changing variables within a
configuration file briefly documented in Table A.8 The configuration file permits users to
specify the name and IDL-type of subscribed, published, resolved, and offered names (those
names resolvable by clients). This permits maximum flexibility in establishing communica-
tions between processes at runtime. The file also provides a mechanism to use unfiltered or
’raw’ position solutions – a good sanity check during filter tuning.

Vehicle Geometry is defined within an assembly XML file and a number of body XML files
(see [?] for more details). The ’ModelFilename’ identifies the root assembly file.

Since many downstream processes do not need the high data rates provided by a pure event
driven publication model, Modelserver provides a timer to send Pose events at a nearly
constant rate regardless of input rates. The rate is set by UpdatePeriod, the period in
milliseconds between updates.

Without magnetometers, IMU drift corrupts orientation estimates. For the Microstrain
IMU, used in the initial ALS project, the drift or bias rate could be captured to correct
drift from subsequent sensor readings. Since ’bias capture’ could only be performed on
a stationary sensor, ModelServer watched for stationary GPS positions and, after a short
’fidget delay’, captured the bias rate every ’fidget period’, and ceased capture if the vehicle
moved. Both fidget delay and period can be set in this file.

Runtime: At runtime, ModelServer loads the model XML file and accepts client queries
through a CORBA IDL interface to retrieve a Body-BodyFrame pair or a relative trans-
formation between a frame of reference and a target frame of interest. Simultaneously,
ModelServer subscribes to GPS, IMU, and WheelEvent processes, publishing a Pose event
for every received event or at a fixed update rate.
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3.3 Planning and Goal Seeking

Planning and goal seeking behaviours are implemented by the FindPath, Obstacle Avoidance
and Pure Pursuit components. FindPath implements the D*Lite [23] path planning algo-
rithm, an incremental heuristic search method implementing goal-directed robot navigation
in unknown terrain. Similar to other candidate arc systems [24, 25], Obstacle Avoidance
estimates the cost of driving candidate angles based on the traversability map. The Pure
Pursuit algorithm [26], a proven method of path following, attempts to follow straight line
segments between waypoints. Finally, the Obstacle Detection component works as a safety
catch for the other modules, checking for any dangerous obstacles directly in the vehicle’s
immediate path.

Component Design Pattern Subscribed Events Published Events Update Rate

FindPath PSR - ArcVote ≥ 500 ms

Obstacle Avoidance SPS TravMapArray ArcVote 500 ms

Pure Pursuit SPS Pose ArcVote 100 ms

Obstacle Detection SPS Range3dLaserIDL ArcVote 26.6ms

Table 22: Planning and Goal Seeking Components

Each of these Planning and Goal Seeking components is derived from the Miro server frame-
work. The FindPath component uses the PSR design pattern while the Pure Pursuit and
Obstacle Avoidance components use the SPS design pattern. These components subscribe
to various sensor and processing components, as shown in Figure 7 and listed in Table 22.
However, each of them publishes the same type of event, an ArcVote event based upon the
ArcVoteIDL, on the event channel.

Each ArcVote event expresses the behaviour’s desire to travel on each arc from a pre-defined
set of candidate arcs (i.e. vehicle steering angle and speeds). Each behaviour can also veto
any arc that it sees fit, to ensure that the vehicle will not travel that path. It also provides
a maximum speed that the vehicle should be allowed to travel. The votes from the various
active behaviours will be combined in the decision making process, described in the next
section, into a vehicle action. The structure of the ArcVote interface for a single arc is shown
in Table 23. The ArcVote contains an array of these votes, one for each of the candidate
arcs, as well as an indication of which behaviour generated this ArcVote event.

3.3.1 FindPath Component

The FindPath component doesn’t subscribe to any events, instead it obtains all of the
information necessary to plan a path via polling the Global Map component. Having planned
an initial path starting from the vehicle’s current location and ending at the first waypoint,
FindPath generates ArcVote events at a fixed frequency attempting to track the planned
path. The path planner is not deterministic in the time it takes to plan a path. If a path
can not be planned in the time available, a vetoed ArcVote event is published. If the vehicle
is unable to track the planned path because of obstacles encountered as the vehicle moves
forward, FindPath is forced to re-plan.
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Item Type Description

Veto bool Setting to true vetoes this arc

Vote float A number between 0 and 1 indicating the de-
sirability of the arc

Certainty float A number between 0 and 1 indicating the be-
haviour’s belief in its data

MaxSpeed float The maximum speed at which the behaviour
finds it acceptable for the vehicle to travel this
arc

Table 23: A vote for a single candidate arc

The run-time operation of FindPath is configured by parameters defined in the Raptor’s
XML configuration file. These four parameters, located under the FindPath section, include
the ChannelName, MaxLookahead, MinLookahead and TrackingTolerance. Table A.9 lists
these parameters and provides an explanation of the significance and usage.

3.3.2 Obstacle Avoidance Component

The Obstacle Avoidance component subscribes to Traverse events, and evaluates a set of
candidate arcs for their suitability. A typical traversability map and the candidate arcs are
shown in Figure 10. The black arcs shown in the picture have been vetoed because of the
discrete obstacles in their path, while the blue arcs have been deemed safe to travel.

Figure 10: A Traversability Map with overlaid candidate arcs

The Obstacle Avoidance component’s operation is determined my a number of run-time
parameters. These parameters are located under the ObsAvoid section of the Raptor’s XML
configuration file. Table A.10 provides a complete list of these parameters and describes
their significance and usage.
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3.3.3 Pure Pursuit Component

The Pure Pursuit component allows the Raptor UGV to seek high level goal GPS way-
points provided by the human controller, by attempting to follow the straight line segments
between them. The algorithm continually calculates the candidate arc necessary to return
the vehicle to the path, at a specified look-ahead distance. This results in smooth path
following behaviour, as is illustrated in Figure 11.

Waypoint n

Lookahead Point 1

Lookahead Point 2

Lookahead Point 3

Waypoint n+1

Figure 11: Illustration of the method Pure Pursuit uses to follow paths.

The waypoints given to the vehicle from the control station are passed to the Pure Pursuit
component via its polled interface defined in the VehiclePlan interface, shown in Table 24.
The WaypointGroupIDLs, referred to in the table, consist of arrays of latitude/longitude
pairs, which define the sequence of waypoints to follow. The PatrolMode, defined in the
table, indicates whether or not the vehicle should continue to cycle through those waypoints
after it has completed the original sequence..

Poll Interface Description

setWaypointList(WaypointGroupIDL) Assigns waypoints to the vehicle

WaypointGroupIDL getWaypointList() Retrieves the vehicles current working way-
point list

WaypointIDL getCurrentWaypoint() Retrieves the waypoint that the vehicle is try-
ing to reach

setPatrolMode(boolean) Tells the vehicle to loop through the way-
points, or not

boolean getWaypointList() Reports whether or not the vehicle is in Patrol
Mode

setHalt(boolean) Stops the vehicle if set to true (i.e. veto all
arcs)

Table 24: Polled Interface for Waypoints in Pure Pursuit
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In order to operate in concert with other behaviours, the Pure Pursuit module does not
directly output a vote for the ideal arc. Rather, it spreads the votes out on a Gaussian
distribution around the ideal arc, so that the decision making process can select candidate
arcs that will avoid obstacles, while still providing goal directed behaviour. A typical vote
set scaling output from the Pure Pursuit component is shown in Figure 12. This algorithm
has no configurable parameters.
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Figure 12: A selection of candidate arcs, coloured to indicate those more desirable to follow
the intended path.

3.3.4 Obstacle Detection Component

Drawing from one or more range sensors, the simple Obstacle Detection component halts
the vehicle if it finds any positive or negative obstacles in the vehicle’s immediate path.
This functions as a safety system that prevents the vehicle from damaging itself. The area
in front of the vehicle to be checked, as well as the acceptable height and depth of obstacle,
are user-definable via the parameters defined in the Raptor’s configuration file. Table A.11
lists these parameters and can be found in the appendix.

The algorithm functions by checking the 3D range readings from the Nodding Laser com-
ponent, adjusting for the height at which the sensor is mounted above the wheels. If it finds
a user-specified number of range returns greater than a certain height tolerance above the
ground plane, or lower than a certain depth below, it will halt the vehicle via an ArcVote
event.

3.4 Decision Making

The ArcArbiter is the sole decision making component under the current Raptor configu-
ration. It asynchronously receives votes from each “voting” component shown in Figure 7
and uses these votes to make decisions. With each vote event, the ArcArbiter component
re-evaluates its decision and is therefore, highly reactive to incoming data. The ArcArbiter
component commands the vehicle actions by passing steering and velocity commands to the
Vehicle Control component via the polled setVelocity interface. Table 25 provides details
about this component’s implementation.
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Component Design
Pattern

Subscribed
Events

Published
Events

Update
Rate

Polling

Arc Arbiter SPS ArcVote None Upon
event

setVelocity

Table 25: Decision Making Component

As is the case with other Raptor components, the ArcArbiter’s run-time operation is influ-
enced by parameters, located under the ArcArbiter section, in the Raptor’s XML configura-
tion file. A complete listing of these parameters, including explanations of their significance,
is found in Table A.12.

3.5 Vehicle Control

Physical control of the Raptor UGV, including steering angles, vehicle speed and braking, is
achieved by the on-board MPC555 microcontroller. The low level MPC555 microcontroller
communicates with the high level Vehicle Control component via a serial port. Data flows
bi-directionally over this communications channel with MPC555 providing status reports at
fixed intervals, while the Vehicle Control component sends control commands as required.
The key control command sent is setVelocity, which defines both the rotational and trans-
lation velocity for the Raptor. Other control commands are also available and are shown
in Table 26.

Poll Interface Polled Object Implementation

setVelocity() VelocityIDL Sets Raptor velocity

getTargetVelocity() none Return target velocity

startVehicle() none Start the vehicle

stopVehicle() none Stop the vehicle

setJoystickVelocity() VelocityIDL Set the Velocity using a joystick

setArbiter() none Turn Arbiter on/off

getMinMaxVelocity() none Returns Min/Max velocities

Table 26: Vehicle Control Polling Interfaces

Given that the Vehicle Control component interfaced with MPC555 microcontroller using
a serial port, it was derived from the most suitable design pattern - the Publish Server
and Reactor. This design pattern features both an ACE reactor and a Miro server; thus,
the component can process serial data using the ACE reactor callback function, while the
Miro server concurrently publishes events and responds to poll requests. This component
publishes a single event type, the VelocityData, that provides information with respect to
the vehicle’s current speed in mm/sec, as shown in Table 27.

The RaptorCommandConfig section, of the Raptor’s XML configuration file, influences the
Vehicle Control component’s run-time operation. Table A.13, located in the appendix,
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Component Design Pat. Subscribed
Events

Published
Events

Update
Rate

Polling

Vehicle Cont. PSR None VelocityData Variable none

Table 27: Vehicle Control Component

provides a complete list of configurable parameters and describes each paramter’s purpose.
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4 Utilities

DRDC developed a series of graphical and text based utilities that assist the researcher in
visualizing and understanding the performance of the Raptor’s various components. The
following sections describe the utilities that were developed for each Raptor component.

4.1 Range Sensors

Two distinct graphical interfaces have been developed to display the raw range data acquired
by the ranging sensors. The QtRange3dSensor utility graphically displays the range data
produced by the nodding SICK laser. The stereo vision point clouds are displayed using
the qtEventStereo utility. The text based utilities Sensor3dStream and Sensor3dGet simply
display the range data as ASCII text.

4.1.1 QtRange3dSensor

The QtRange3dSensor utility, shown in Figure 13, displays the raw range data acquired
by the nodding SICK laser. Before displaying, the data must be transformed from the
Laser frame into the Raptor frame, thus the ModelServer component must be queried for
the appropriate transform (see Table 30). Once this transform has been acquired, the
QtRange3dSensor utility periodically polls the Nodding Laser component, transforms the
acquired raw range data into the Raptor frame and displays the results4. Table 28 shows
the objects and interfaces required by this utility.

Figure 13: Graphical Range Display

4The results may be displays a X distances or Z elevations.
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Object Server Resolution Variable Polled Interface Polled Object

ModelServer Platform var getTransformation() PoseTransformIDL var

Laser Range3dSensor var get3dLaserFullScan() Range3dLaserEventIDL

Table 28: QtRange3dSensor Objects and Interfaces

The polled implementation means this utility can only display range data that is produced
by the Nodding Laser component or a component that support polling; logged data replayed
via the LogPlayer utility can not be directly display5. If it is necessary to graphically display
logged laser range data the QtRange3dServer server acquires Laser events, while providing
the required polling interface.

4.1.2 Sensor3dStream

The Sensor3dStream utility is a text based methods for printing range data. Sensor3dStream
subscribes to the events listed in Table 29. It polls the ModelServer component using the
object shown in Table 30, then transforms the data to the Raptor frame and, finally, the
range data is printed in a text format.

Event Channel Event Name Event Object

EventChannel Laser11 Range3dLaserIDL/Range3dSeqEventIDL

EventChannel Laser12 Range3dLaserIDL/Range3dSeqEventIDL

EventChannel Stereo Range3dStereoEventIDL/Range3dArrayEventIDL

Table 29: Sensor3dStream Subscribed Events

Object Server Resolution Variable Polled Interface Polled Object

ModelServer Platform var getTransformation() PoseTransformIDL var

Table 30: Sensor3dStream Polled Objects from the Model Server

4.1.3 Sensor3dGet

The Sensor3dGet utility polls the Nodding Laser or Stereo Vision component for the objects
listed in Table 31.

The range data must be transformed into the Raptor frame; thus it also polls the Model
Server component for transform objects, transforms the range data and prints in a text
format.

5The LogPlayer doesn’t support polling.
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Object Server Resolution Variable Polled Interface Polled Object

NodLaser Range3dSensor var get3dSeqFullScan() Range3dSeqEventIDL

NodLaser Range3dSensor var get3dLaserFullScan() Range3dLaserEventIDL

NodLaser Range3dSensor var get3dArrayFullScan() Range3dArrayEventIDL

NodLaser Range3dSensor var get3dStereoFullScan() Range3dStereoEventIDL

ModelServer Platform var getTransformation() PoseTransformIDL var

Table 31: Sensor3dGet Polling Variables and Objects

Figure 14: QtBodyViewer Display

4.2 QtBodyViewer

The QtBodyViewer utility is a simple Qt application designed to help visualize the layout
of frames in the ModelServer Geometry files. QtBodyViewer loads and presents all frames
in a Qt 3D environment (see Figure 14). By using the mouse, the frame layout may be
inspected from any angle and can be interrogated for their body-frame specification.

Note that both the QtBodyViewer and QtEventStereo utilities rely on the third party Qt
library: libQGLViewer.

4.3 QtEventPose

To inspect ModelServer’s event driven output, a simple Qt utility, qtPoseEvent has been
provided (see Figure 15). Event based Miro applications pose some minor problems for
Qt, specifically IDL types do not cross the Qt-Miro boundary well. Typically Qt IDL
pseudotypes are required to bridge the gap between Qt and Miro. QtEventPose simply
provides a GUI window onto PoseTransformIDL events (see Table 21) as they are published
on the EventChannel.
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Figure 15: QtEventPose Display

4.3.1 QtEventStereo

The QtEventStereo utility is a simple Qt application designed to help visualize the Digiclops
point cloud within ModelServer coordinate system. Similar to QtBodyViewer, qtEventStereo
loads and presents all frames in a Qt 3D environment (see Figure 16) as well as the Digiclops
point cloud. By using the mouse, the frame and point cloud layout may be inspected from
any angle and frames can be interrogated for their body-frame specification.

Figure 16: QtEventStereo Display

4.4 Maps

Graphical displays are an invaluable interfaces assisting in the development, understanding
and monitoring of maps and are key tools in understanding the decision making process
as well. The QtMap interface graphically displays global terrain maps and traversability
maps. Egocentric terrain and traversability maps are displayed using the LocalMap utility,
which can also display the candidate arcs created by the ArcArbiter component. Each map
type is discussed, in further detail, in the following sections.
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4.4.1 QtMap

The global terrain map is a 21

2
-D terrain map is centred on the vehicle and is referenced

to the cardinal directions (N,E,S,W). Thus, in the global terrain map shown in Figure 17,
North points towards the top of the map.

Figure 17: Typical Global Terrain Map

The global terrain map acquires data via a polling process using the appropriate interface,
where the data is supplied from the Terrain Map component. Table 32 shows the object
polled by this utility6.

Object Server Resolution Variable Polled Interface Polled Object

Terrain Map Map var getMapArray() MapArrayEventIDL

Terrain Map Map var getMapSeq() MapSeqEventIDL

Table 32: Global Terrain Map Interfaces and Polled Objects

4.4.2 LocalMap

The local map displays an egocentric world, which corresponds to view from the front
bumper of the vehicle. Figure 18 shows a typical the local map, where the vehicle’s bumper
is located at the bottom of the image.

The local map also acquires data via a polling process and once again the data is supplied
from the Terrain Map component. Table 34 shows the object(s) polled by this utility and
interfaces required to acquire the object(s).

6This utility can display either array or sequence based maps; thus, the table shows both interfaces and

objects.
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Figure 18: Typical Egocentric Local Map

Object Server Resolution Variable Polled Interface Polled Object

Terrain Map Map var getEgoMapArray() EgoMapArrayEventIDL

Terrain Map Map var getEgoSeqArray() EgoMapSeqEventIDL

Table 33: Egocentric Terrain Map Interfaces and Polled Objects

4.4.3 Launcher

As depicted in Figure 19, this utility displays the state of running components and permits
users to run, kill and restart them on the fly. It uses an XML parameter file in which
paths, command names, and command line parameters are specified. Though not a Miro
component per se, launcher can be used to enable/disable a process, apply variable delays
between process starts, launch a process in a terminal (TTY), and launch multiple processes
automatically. Launcher temporarily fills a role for component monitoring and control.

Runtime: On startup launcher loads the XML file, kills off any preexisting opening pro-
cesses listed in the file and awaits instructions. New XML profiles may be opened at any
time, killings all running processes prior to the new file. Launcher does not discriminate
between child processes, and will kill off any preexisting processes with the same name.

Enabled Processes: Processes can be ’enabled’ as part of the autolaunch group (the default
XML setting) or disabled through the GUI at any time. Any process in the autolaunch
group can be launched or killed with a single keystroke (CTRL+SHIFT-L and CTRL-K
respectively).

Terminals: When launched, a component will be given an output terminal if TTY is set
to TRUE. When a process TTY is deliberately or spontaneously killed, the TTY will
disappear. The reverse is not true, closing a TTY will not kill the process. Unchecking
TTY in launcher does not close or kill a TTY.
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Figure 19: Launcher Display

GUI Interaction: Processes can be selected with a mouse LEFT-CLICK. A group of pro-
cesses can be assembled through standard SHIFT or CTRL mouse selection.

Launching Processes: Selected components may be launched through CTRL-L, while
autolaunching is invoked through CTRL-SHIFT-L. Similarly, selected components may be
killed through CTRL-K.

Launch Delay: After each process launch, Launcher will wait dT seconds before launching
another component. “dT” may be set in the XML file or through the GUI.

Killing Processes: Processes are killed through a “killall −9 commandname1 command-
name2” call. Killing processes does not guarantee that peripheral devices will stop what they
are doing. – only the kill switch can do that.

Display: The displayed values PID, %CPU, and Memory are gathered through a system
call: ps ocomm= -opid= -opcpu= -osize=.

To discriminate between xhosted sessions, the hostname of the computer is displayed in the
status bar at the lower left corner of the launch window. Other messages will appear on the
status bar periodically. The display is refreshed at a rate set in the XML file (RefreshRate,
the default is 5 seconds) that can be set through the VIEW menu.
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Parameter Description Type(Default)

Path the Component’s Path string(N/A)
Name the Component Name string(N/A)
Enabled Component is in autolaunch group bool(false)
InTTY Component needs terminal bool(true)
Period Delay next Component launch (in seconds) int(3)
Arguments Component’s command line arguments string vector(N/A)

Table 34: Launcher Process XML File entries. Launcher supports environment variables
(e.g. $NSC, $NS, $TAO ROOT, etc.) in both Path and Argument fields.
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5 Effort

Implementing the autonomous capabilities for the Raptor UGV, under the “Architecture
for Autonomy“, required a significant research and development effort. The SLOCCount
application was used to summarize and quantify this effort. SLOCCount (pronounced
”sloc-count”) is a suite of programs for counting physical source lines of code (SLOC)
in potentially large software systems. Thus, SLOCCount is a ”software metrics tool” or
”software measurement tool” [27]. Each directory under the drdcMiro root was analyzed
by the SLOCCount application. The effort is broken into four separate categories:

• Configuration and Testing software.

• The core components that implement autonomous capabilities.

• Text based utilities for printing the status of the system’s components.

• Utilities that are useful to visualize and display the status of the system’s components.

Table 35 shows the effort applied to the configuration and testing process.

Component Predominate Lines of Code Effort
Language Person-Years

Config sh 7783 1.72

Tests cpp 241 0.04

Total Effort 8024 1.76

Table 35: Estimated Effort associated with Configuration and Testing

Text based tools are useful in presenting certain types of status information. The effort
required to develop these tools is detailed in Table 36.

As is shown in Table 37, the majority of the software effort resided rested with development
of components; thus, with the implementation of autonomous capabilities.

Although text based presentations are useful under certain circumstances, under other
circumstances a graphical interface is superior. Table 38 shows the effort expended to
develop graphical interfaces and, thus, the visual presentation of data.

Overall, researchers developed a total of 60,800 source lines of code that corresponds to an
estimated 13.01 person-years of development effort.
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Component Predominate Lines of Code Effort
Language Person-Years

3dmg cpp 452 0.09

arcVote cpp 101 0.02

Examples cpp 498 0.10

gpsSokkia cpp 176 0.03

map cpp 451 0.09

missionPlan cpp 133 0.02

NodLaser cpp 53 0.01

panTilt cpp 38 0.01

pioneer cpp 75 0.01

platform cpp 680 0.13

range3dSensor cpp 431 0.08

raptor cpp 205 0.04

vehiclePlan cpp 44 0.01

Total Effort 3337 0.71

Table 36: Estimated Effort to Implement Text based Utilities
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Component Predominate Lines of Code Effort
Language Person-Years

3dmg cpp 1087 0.22

arcArbiter cpp 649 0.13

controlStation cpp 840 0.17

digiclops cpp 506 0.10

DIIPanTilt cpp 696 0.14

eventChannel cpp 216 0.04

findPath cpp 5257 1.14

globalMap cpp 4207 0.90

gpsGarmin cpp 914 0.18

gpsSokkia cpp 1253 0.25

healthSafety cpp 1174 0.24

laserSafety cpp 422 0.08

map terrain cpp 2180 0.45

map traverse cpp 1899 0.39

miro cpp 7650 2.07

nodlaser cpp 1869 0.39

obsAvoid cpp 687 0.13

platform cpp 1896 0.39

purePursuit cpp 749 0.15

raptorCommand cpp 2631 0.55

urgLaser cpp 670 0.13

vehicleIntel cpp 394 0.08

waypointArbiter cpp 156 0.03

Total Effort 38034 7.96

Table 37: Estimated Core Component Efforts
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Component Predominate Lines of Code Effort
Language Person-Years

launcher cpp 920 0.18

localMap cpp 870 0.17

nsview cpp 403 0.08

PanTilt cpp 239 0.04

PioneerJoy cpp 131 0.02

qtBodyViewer cpp 669 0.13

qtEventImu cpp 442 0.08

qtEventPlanMap cpp 1570 0.32

qtEventPose cpp 636 0.12

qtEventStereo cpp 938 0.19

qtHealthSafety cpp 745 0.15

qtMap cpp 750 0.15

qtPollDIIPanTilt cpp 617 0.12

qtRaptor cpp 1252 0.25

rangeSensor cpp 557 0.11

rapJoy cpp 136 0.02

raptorGUI cpp 324 0.06

widgets cpp 447 0.09

Total Effort 11405 2.58

Table 38: Estimated Effort to Implement Graphical based Utilities
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6 Conclusions

DRDC required a modular, extensible, flexible and scalable framework to support its un-
manned vehicle program. Adopting a Component Based Software Engineering philosophy
and building upon the Miro framework resulted in the “Architecture for Autonomy” .
The AFA has deep open source source roots. Linux is the preferred operating system;
configuration, compiling and linking uses the GNU toolchain; open source libraries are ex-
tensively used; ACE, an open source communications middleware toolkit, and the TAO
implementation of CORBA underlie the Miro framework. Subsequently, the AFA and all
of its prerequisites are freely available; there are no licensing issues to restrict its usage and
dissemination.

Under the AFA researchers developed a suite of components, that when operating in unison,
allowed the Raptor UGV to exhibit autonomous traits. This component-based implementa-
tion, relying on the CORBA’s network transparency capabilities, delivered the modularity,
extensibility, flexibility and scalability that both researchers and the program required. The
flexibility provided by the ACE/TAO middleware toolkits allowed the Raptor’s software ar-
chitecture emerged to meet the system requirements. The Raptor UGV components were
divided into six logical domains: sensing; information processing and representation; plan-
ning and goal seeking; decision making; vehicle control and utilities. The sensing domain
included five components; information processing and representation was comprised of four
components; planning and goal seeking encompassed another four components; single com-
ponents implemented decision making and the vehicle control; and there were nine utility
components. Data transparently flowed between the various components via the asyn-
chronous delivery of events, or through a polling mechanism. Regardless of the delivery
mechanism, all data transfers were defined by standard interfaces. These interfaces were
developed under the Interface Definition Language and, thus, are portable across networks
and operating systems.

From a developmental perspective over 60,000 source lines of code, representing an effort
of 13 person-years, were required to implement the Raptor UGV. The development of core
autonomous capability consumed a majority of the effort; requiring approximately 8 person-
years to implement. The implementation of graphical and text based utilities were next
major consumer of resources, and required approximately 3.25 person-years to complete.
The remainder of the effort was expended on the system setup, configuration and testing.

The AFA underlies the autonomy software developed for the Raptor UGV, but its flexibil-
ity allows it to be easily adapted to other unmanned vehicle platform. Work is currently
underway to extend the Miro framework to support the wheeled Pioneer platforms. Addi-
tionally, researchers at Valcartier are extending Miro framework to support unmanned air
vehicles, namely an autonomous helicopter.
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Annex A: Tables of Configuration Parameters

Parameter Default Description

EventChannelName EventChannel The event channel’s name

EventName Laser11 Name of events published

LaserID 11 I.D. encoded in the event structure

Host 131.135.74.200 Nodding Laser I.P. Address

Port 24750 Nodding Laser Port Number

Baudrate 500000 Nodding Laser Baudrate

Motorrate 15 Nodding Rate Deg/sec

LowAngle -40 Lowest Nod angle, degrees

HighAngle -10 Highest Nod angle, degrees

LaserOffsetAngle -2 A tweaking parameter to adjust the mount
angle

Laserres 50 Laser Resolution, see the SICK Manual

MountAngle -14 Mount angle of the laser - Used for adaptive
nodding

MountHeight 3.0 Mounting Ht. above ground (m) - Used for
adaptive nodding

ScanDistance 0.2 Scan distance (m) - Used for adaptive nodding

Table A.1: Nodding Laser Component’s Configuration Parameters

Parameter Default Description

EventChannelName EventChannel The event channel’s name

EventName Stereo Name of event published

MaxRange 8000 Maximum depth range in mm

frameRate 2 The Event Publication rate in frames/sec.

Table A.2: Stereo Vision Component’s Configuration Parameters
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Parameter Default Description

Device /dev/ttyUSB0 The serial port where the hardware is found

ChannelName EventChannel Name of event channel to publish data

Notify true Toggles whether or not the component pub-
lishes its data

EventName Imu The name of the event on the Event Channel.

Table A.3: Imu Component’s Configuration Parameters

Parameter Default Description

Device /dev/ttyUSB0 The serial port where the hardware is found

ChannelName EventChannel Name of event channel to publish data

Notify true Toggles whether or not the component pub-
lishes its data

EventName Gps The name of the event on the Event Channel.

Table A.4: GPS Sokkia Component’s Configuration Parameters

Parameter Default Description

Device /dev/ttyS0 Serial port

LfdParam N/A Left wheel distance calibration

RfdParam N/A Right wheel distance calibration

SteerParam N/A Steering calibration parameters

SpeedRepTime 1000 Speed report interval (ms)

WheelDistRepTime 200 Wheel distance report interval (ms)

RaptorOdometryEvent RaptorOdometry Name of published Events

Table A.5: Wheel Odometry Component’s Configuration Parameters
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Parameter Default Description

EventChannelName EventChannel The event channel’s name

EventName Terrain Name of event published

Depth 32000 Map depth in mm

Width 32000 Map width in mm

Gridsize 200 Map Grid size in mm

notify true Published events enabled, True/False

RangeEventName1 Laser11 Subscribed Range Event

RangeEventName2 Laser12 Subscribed Range Event

RangeEventName3 Stereo Subscribed Range Event

PoseEventName Pose Subscribed Pose Event

MapEventInterval 0.25 Create map events on a timed interval, sec.

MapUpdateTime 7.0 Time required to fill map with data, sec.

PlatformEvent ModelService Polled Object for geometry

GroundFrame Raptor: Front-
BumperCenter

Map Frame

SickLaserFrame1 FrontNoddingSICKLeft:
AxleCenterFreeEnd

Left SICK Laser Frame

SickLaser1 ID 11 Left Laser I.D.

SickLaserFrame2 FrontNoddingSICKRight:
AxleCenterFreeEnd

Right SICK Laser Frame

SickLaser2 ID 12 Right Laser I.D.

DigiclopsFrame Digiclops:ImagePlane Digiclop Frame

BumperHeight -500 Ground to bumper Ht., mm

MaxVelocity 6000 Max vehicle velocity, mm/sec.

PoseInterval 0.1 Pose update interval, sec. Used with MaxVe-
locity to audit position changes

OrientationDevError 2.0 Estimate Orientation Error, deg.

StereoPeriod 0.5 Stereo Event Rate, sec. Used to equal Stereo
and Laser data densities

Table A.6: Terrain Map Component’s Configuration Parameters
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Parameter Default Description

StepOn 1 Turn the Step Hazard calculation on/off

SlopeOn 1 Turn the Slope Hazard calculation on/off

StepPercent 0 Calculate Step Hazard as a percentage

Stepheight 300 Step hazard height

Maxslope 20 Slope hazard angle

ChannelName EventChannel EventChannel name

GlobalMap true Turn the Global Traversability Map on/off

EgoMap true Turn the Ego Traversability Map on/off

Farfield 8000 Distance (mm) of the farzone

Farfieldscale 1.5 Step hazard scaling factor for the farfield area

Farfieldslopescale 1.5 Slope hazard scaling factor for the far-field
area

MapEventInterval 1 Rate (seconds) at which events are produces

MapUpdateTime 7 Delay (seconds) between events after a clear
map has been issued

GlobalTravMapDescription Description of the Global Traversability Map
Depth 32000 Depth (mm) of map
Width 32000 Width (mm) of map

Gridsize 500 Size of map cells (mm)
EventName Traverse Event name

EgoTravMapDescription Description of the Ego Traversability Map
Depth 16000 Depth (mm) of map
Width 16000 Width (mm) of map

Gridsize 500 Size of map cells (mm)
EventName Traverse Event name

TerrainMapDescription Description of the Global Terrain Map events
subscribed to

Depth 32000 Depth (mm) of map
Width 32000 Width (mm) of map

Gridsize 200 Size of map cells (mm)
EventName Terrain Event name

EgoTerrainMapDescription Description of the Ego Terrain Map events
subscribed to

Depth 16000 Depth (mm) of map
Width 16000 Width (mm) of map

Gridsize 200 Size of map cells (mm)
EventName Terrain Event name

Table A.7: Traversability Map Component’s Configuration Parameters
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Parameter Default Description

EventChannelDescription
Subscriptions

Gps Gps IDL-type EventName
Imu Imu IDL-type EventName

Publications
Pose Pose IDL-type EventName

ResolvedNames
Imu Imu IDL-type EventName

OfferedNames
Platform ModelService IDL-type EventName

UseRawPose true don’t use filtering
ModelFileName 050917raptor01.XML name of geometry model file
UpdatePeriod 0 0: event driven, > 0: timed updates
FidgetDelay 20 delay before fidgeting
FidgetPeriod 300 period between fidgets

Table A.8: ModelServer’s Configuration Parameters

Parameter Default Description

MaxLookahead 20.0 The maximum distance (in planning grid units) along the
planned path from the point on the path closest to the
vehicle’s current position that the tracking algorithm will
search.

MinLookahead 7.0 The minimum distance (in planning grid units) along the
planned path from the point on the path closest to the
vehicle’s current position that the tracking algorithm will
search.

TrackingTolerance 30.0 The maximum distance (in planning grid units) the vehicle
can be from the planned path without forcing a replanning
episode.

PlanUpdateDelayTime 5.0 The delay (s) prior to the first call to generate a Ar-
cVoteIDL event.

PlanEventInterval 1.0 The interval (s) between successive ArcVoteIDL events.

Table A.9: FindPath Component’s Configuration Parameters
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Parameter Default Description

CurveMakingConst 0.01 A distance(m) which the algorithm steps
through to construct an approximation of the
candidate arc

VehicleRadius 0.5 A radius(m) of a circle which approximates
the size of the vehicle

MaxVelocity 2.0 The top speed(m/s) which the algorithm will
allow for any arc

MinVelocity 0.5 The lowest speed(m/s) the algorithm will sug-
gest for any arc before vetoing it

NearZone 0 The number of map rows immediately in front
of the vehicle to ignore obstacles. Makes it
possible to ignore parts of the map.

FarZone 39 The number of map rows immediately in front
of the vehicle to evaluate. Makes it possible
to ignore parts of the map which are too far
away to be important.

DistFactor 0 A percentage by which to discount the cells
estimation for distance

MinDistDiscount 1 A number between 0 and 1 which indicates
how low we can discount for distance (1 = no
discount)

MapDepth 16000 The depth of the Traversability Map(mm).

MapWidth 16000 The width of the Traversability Map(mm).

MapGridsize 0.01 The size of each cell in the Traversability
Map(mm).

DiscountSpeeds false Whether or not the vehicles speed will be con-
trolled based on the obstacle map.

CostUnknownCells false Whether or not to consider unknown portions
of the map as obstacles.

VetoUnknownCells false Whether or not to consider unknown portions
of the map as obstacles.

Table A.10: Obstacle Avoidance Component’s Configuration Parameters
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Parameter Default Description

SafetyHeight 0.3 The maximum obstacle height considered
safe(m)

SafetyDepth 0.3 The maximum obstacle depth considered
safe(m)

SafetyDist 3 How far in front of the vehicle to check for
obstacles(m)

VehicleWidth 1 The approximate width of the vehicle(m)

DefaultYMax 3 How far to the left/right of the vehicle to
check for obstacles(m)

LaserHeight 2 The height of the laser sensor above the
ground

NumHitsTolerance 5 How many laser range returns outside the
safety height/depth triggers an obstacle de-
tection

MaxLaserRange 8191 How far the laser sensor can see (mm)

CheckPosObs true Whether or not to look for positive obstacles

CheckNegObs true Whether or not to look for negative obstacles

ResetCounter 200 How many laser scans to wait after a halt be-
fore rechecking for obstacles

Table A.11: Obstacle Detection Component’s Configuration Parameters

Parameter Default Description

ObsWeight 1 The importance of Obstacle Avoidance’s votes
(1 being standard)

PursuitWeight 1 The importance of Pure Pursuit’s votes

PlannerWeight 1 The importance of Find Path’s votes

LaserSafetyWeight 1 The importance of Obtacle Detections’s votes

TransVelocitySetPoint 0.5 The maximum allowed vehicle speed (m/s)

StaleVoteTimeSec 1 How long to hang on to a vote before consid-
ering it stale

StaleVoteTimeUSec 500000 How long to hang on to a vote before consid-
ering it stale

Table A.12: Arc Arbiter Component’s Configuration Parameters
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Parameter Default Description

RaptorMotionEvent RaptorMotion Event name to publish under

Device /dev/ttyS0 Serial device to write to

MaxSteeringAngle 30 Maximum allowable steering angle (degrees)

MaxRotVelocity 1 Maximum allowable rotational velocity (Rad/s)

MaxTransVelocity 2000 Maximum allowable translational velocity (mm/s)

RfdParam N/A Right wheel calibration parameter

LfdParam N/A Left wheel calibration parameter

PedalParam N/A Pedal calibration parameter

SteerParam N/A Steering calibration parameter

SteerPID N/A Steering PID parameters

Table A.13: Vehicle Control Component’s Configuration Parameters
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